Bounds on the Elements of the Equivalent Network for Scattering in Waveguides

II. Application to Dielectric Obstacles

RALPH BARTRAM and LARRY SPRUCH

Contract No. AF 19(604)5238
APRIL, 1959
NEW YORK UNIVERSITY
Institute of Mathematical Sciences
Division of Electromagnetic Research
Research Report No. EM-133

BOUNDS ON THE ELEMENTS OF THE EQUIVALENT NETWORK
FOR SCATTERING IN WAVEGUIDES
II. APPLICATION TO DIELECTRIC OBSTACLES

Larry Spruch and Ralph Bartram

Larry Spruch
Ralph Bartram
Sidney Bodowitz
Acting Project Director

Dr. Werner Gerbes
Contract Monitor

The research reported in this document has been sponsored by the Electronics Research Directorate of the Air Force Cambridge Research Center, Air Research and Development Command. This report is intended only for internal management uses of the contractor and the Air Force.

Contract No. AF 19(604)5238

April, 1959
Requests for additional copies by Agencies of the Department of Defense, their contractors and other Government agencies should be directed to the:

ARMED SERVICES TECHNICAL INFORMATION AGENCY
DOCUMENTS SERVICE CENTER
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

Department of Defense contractors must be established for ASTIA services or have their 'need-to-know' certified by the cognizant military agency of their project or contract. All other persons and organizations should apply to the:

U.S. DEPARTMENT OF COMMERCE
OFFICE OF TECHNICAL SERVICES
WASHINGTON 25, D.C.
Abstract

The theory developed in the companion article for obtaining rigorous bounds on \(\cot \eta \), where \(\eta \) is the phase shift, is applied to scattering by dielectric obstacles in rectangular waveguides. For the obstacles considered here, bounds are also obtained on the phase shifts directly and on the elements of the equivalent 'T' network. The exact solution for a dielectric slab of finite length which extends to the conducting boundaries of the waveguide and completely encloses the obstacle is introduced as a convenient trial function. The permittivity of the slab is retained as a parameter which is varied to improve the bounds. In the expressions for the bounds on \(\cot \eta_e \) and \(\cot \eta_o \), the particular obstacle configuration appears only in certain integrals of relatively simple form. Numerical results are obtained for large and small obstacles of various shapes, including some truly three-dimensional cases. The upper and lower bounds on the phase shifts and on the elements of the equivalent circuit are found to be quite close to one another. In one case, the bounds obtained by using the simple trial function are compared with the bounds obtained by using the trial function which generates the Schwinger integral variational principle.
Table of Contents

1. **Introduction** | 1

2. **Trial function for dielectric obstacles** | 2

3. **Numerical examples for dielectric obstacles** | 7

References | 12

Distribution List
1. Introduction

In the preceding paper\(^1\) the Kato\(^2\) method for obtaining rigorous variational bounds on the phase shifts was adapted to scattering by obstacles in waveguides. In this paper the theory is applied to several specific examples of obstacles in a rectangular waveguide. The application to metallic obstacles is complicated by the requirement that the trial function \(u_t\) be normal to the surface of the obstacle, and it therefore seemed preferable to limit ourselves in the present paper to dielectric obstacles.

In principle, there is a great deal of freedom in the choice of a trial function. In practice, the trial function must of course be one for which the integrals in Equation (14), Part I, can be performed. We have gone further and sought a trial function which leads to an uncomplicated final analytic form from which numerical results can be fairly readily obtained. A particularly simple trial function which has been found to provide reasonably close bounds is the exact solution for a homogeneous dielectric slab of finite extent in the axial direction which completely encloses the obstacle and extends to the conducting boundaries of the waveguide. It should be noted that this trial function contains all of the symmetry properties that could be required with any obstacle to ensure completeness of the associated eigenfunctions.

We have also given some consideration to the trial function which generates the Schwinger integral variational principle.

Both the variational principle and the method for obtaining bounds are equally applicable to relatively large and very small obstacles, and include multiple, hollow and composite obstacles. For simplicity, we have considered only examples of uniform permittivity, but this is by no means necessary.
We have also considered obstacles whose maximum axial extent is a half wavelength in the dielectric: this enables us to use the lower bounds on the associated eigenvalues α_0 and β_0 developed in Part I, but as noted there, bounds on α_0 and on β_0 can be obtained under much more general conditions. Finally, the scattering problems satisfy the four conditions listed in the Introduction to Part I; these conditions are essential to the applicability of the method. The variational principle and the method for obtaining bounds are valid even when the problem cannot be reduced to a scalar problem, for example, when the obstacle does not extend between opposite walls of the waveguide.

2. **Trial function for dielectric obstacles**

In this section the theory of Part I will be applied to scattering from dielectric obstacles in a rectangular waveguide. The dimensions of the waveguide and the coordinate system are defined in Figure (1). The polarization of the dominant mode is parallel to the y axis. We will take as the trial function the exact function for a homogeneous dielectric slab which fills the region $-d < z < d$, where $2d$ is the greatest extent of the obstacle in the z direction, and extends to the conducting boundaries of the waveguide. Since the obstacle is symmetric about $z = 0$, the slab completely encloses the obstacle. The permittivity of the slab, or, equivalently, the 'potential' of the slab is retained as a parameter to be varied to improve the bounds on the phase shifts γ_e and γ_o associated with the even and odd standing wave solutions, respectively. The normalization constant Θ can also be varied. However, it is more convenient, and it will prove to be sufficient, simply to take $\Theta = \pi - kd$ in the odd case and in the determination of a lower bound
Figure 1

Rectangular waveguide showing dimensions and coordinate system.
on \(\text{kcot}(\eta - \varphi) \) in the even case, and \(\Theta = \frac{1}{2} \pi - kd \) in the determination of the upper bound in the even case. With this choice of \(\Theta \), \(\beta_\Theta \) can be regarded as infinite in Equation (27) of Part I. Note that the variation of either the potential or of \(\Theta \) to improve the upper bound is independent of the variation of these quantities to improve the lower bound.

The trial functions for \(-d < z < d\) with the above choices for \(\Theta \) are odd:

\[
\frac{U}{\rho_{ot}} = -\frac{1}{2} \left(\frac{2}{ab} \right)^{\frac{1}{2}} \frac{\sin(\pi x/a) \sin Kz}{\sin Kd} \tag{1a}
\]

even, lower bound:

\[
\frac{U}{\rho_{et}} = -\frac{1}{2} \left(\frac{2}{ab} \right)^{\frac{1}{2}} \frac{kd}{Kd} \frac{\sin(\pi x/a) \cos Kz}{\sin Kd} \tag{1b}
\]

even, upper bound:

\[
\frac{U}{\rho_{et}} = -\frac{1}{2} \left(\frac{2}{ab} \right)^{\frac{1}{2}} \frac{\sin(\pi x/a) \cos Kz}{\cos Kd} \tag{1c}
\]

where \(j \) is the unit vector in the y direction. The parameter \(K \) which is to be varied is related to the 'potential' \(W \) of the dielectric slab by

\[
K = (k^2 + W')^{\frac{1}{2}}. \tag{2}
\]

The normalization of the trial functions in Equations (1) is determined by matching the tangential components of \(E \) and \(H \) at \(z = \pm d \) to the asymptotic forms defined by Equations (9) and (13a) of Part I. The trial phase shifts,
\(\eta_{ot} \) and \(\eta_{et} \), are obtained by the same procedure. It is also convenient to take the weight function \(\rho \) to be constant for \(-d \leq z \leq d\) and to be zero for \(|z| > d\). Substitution of the trial functions and trial phase shifts in Equations (14) and (27) of Part I then yields as the bounds on \(\cot \eta_e \) and \(\cot \eta_o \),

\[
- \frac{1}{2} \csc^2(Kd) \left[P^2 q^- + (2PR + R^2)(\frac{1}{2}) \right] / (\pi^2 - k^2 d^2 - R) \leq \\
Kd \cot(\eta_o - \pi + kd) - Kd \cot(Kd) + \frac{1}{2} \csc^2(Kd)(PQ^- + RI_0) \leq 0 \quad (3a)
\]

\[
Kd \cot(\eta_e - \frac{\pi}{2} + kd) \leq -Kd \tan(Kd) - \frac{1}{2} \sec^2(Kd)(PQ^+ + RI_e) \quad (3b)
\]

\[
KdKd \cot(Kd) - \frac{1}{2} Kd \csc^2(Kd)(PQ^+ + RI_e)
\]

\[
- \frac{1}{2} Kd \csc^2(Kd) \left[P^2 q^+ + (2PR + R^2)(\frac{1}{2}) \right] / (\pi^2 - k^2 d^2 - R) \leq \\
(\frac{Kd}{\pi})^2 \cot(\eta_e - \pi + kd) \quad (3c)
\]

where

\[
P \equiv (kd)^2 - (Kd)^2 \quad (4a)
\]

\[
Q^+ \equiv 1 + \sin 2Kd / 2Kd \quad (4b)
\]

\[
R \equiv \omega d^2 \quad (4c)
\]
\[I_\text{e,} = (2/\text{abd}) \int_{\text{obst}} \sin^2(\pi x/a) \sin^2(Kz) \, dt \quad (4d) \]

\[I_\text{e} = (2/\text{abd}) \int_{\text{obst}} \sin^2(\pi x/a) \cos^2(Kz) \, dt \quad (4e) \]

The range of integration in Equations (4d) and (4e) is over the volume of the obstacle. With the specified values of \(\theta \), it follows from Equations (28) of Part I that a lower bound on \(K_\text{e} \) is given by

\[K_\text{e} \geq \sin^2 - k^2 d^2 - Wi^2 \quad (5) \]

We have incorporated this lower bound in the inequalities (3).

The inequalities (3) are quite general; it can be seen that the specific geometry of the obstacle enters only in the integrals \(I_\text{e,} \) and \(I_\text{e} \) defined by Equations (4d) and (4e), respectively. The integrals \(I_\text{e,} \) and \(I_\text{e} \) are evaluated below for four obstacle geometries: a rectangular parallelepiped and right circular cylinders oriented parallel to each of the coordinate axes.

(A) A rectangular parallelepiped, extending from \(x_1 \) to \(x_2 \),

\(y_1 \) to \(y_2 \), and \(z = -d \) to \(z = +d \), as shown in Figure (A).

\[I_{\text{e,}} = \left(y_2 - y_1 \right) \left[\frac{x_2 - x_1}{a} - \frac{1}{2\pi} \sin \left(\frac{2\pi x_1}{a} \right) + \frac{1}{2\pi} \sin \left(\frac{2\pi x_2}{a} \right) \right] \]

\[K_{\text{e,}} \geq \sin^2 - k^2 d^2 - Wi^2 \quad (5A) \]
A dielectric obstacle in a rectangular waveguide in the form of a rectangular parallelepiped oriented parallel to the axes of the waveguide.
(B) A right circular cylinder parallel to the x axis, extending from \(x_1 \) to \(x_2 \) and with radius \(d \), as shown in Figure (2B). The integrals do not depend upon the y coordinate of the axis of the cylinder.

\[
I_{e.o} = \frac{\pi d}{2b} \left[\frac{x_2 - x_1}{a} - \frac{1}{2\pi} \sin \left(\frac{2\pi x_2}{a} \right) + \frac{1}{2\pi} \sin \left(\frac{2\pi x_1}{a} \right) \right] \\
\times \left[1 + \frac{J_1(2Kd)}{Kd} \right]
\]

(6B)

where \(J_1 \) is a Bessel function.

(C) A right circular cylinder parallel to the y axis, extending from \(y_1 \) to \(y_2 \), with radius \(d \), and with the axis of the cylinder at \(x = x_0 \), as shown in Figure (2C).

\[
I_{e.o} = \frac{\pi d(y_2 - y_1)}{2ab} \left\{ 1 + \frac{J_1(2Kd)}{Kd} - \cos \left(\frac{2\pi y_0}{a} \right) \cdot \frac{J_1(2\pi d/a)}{\pi d/a} \right\} \\
\times \\
\frac{J_1 \left(\frac{2[Kd]^2 + (\pi d/c)^2}{\left([Kd]^2 + (\pi d/c)^2 \right)^{\frac{1}{2}}} \right)}{\left([Kd]^2 + (\pi d/c)^2 \right)^{\frac{1}{2}}}
\]

(6C)

(D) A right circular cylinder parallel to the z axis, extending from \(z = -d \) to \(z = +d \) with radius \(R \) and with axis at \(x_o \).
Figure 2B

A dielectric obstacle in a rectangular waveguide.
In the form of a right circular cylinder of radius \(d \) parallel to the \(x \)-axis.
Figure 2C

A dielectric obstacle in a rectangular waveguide, in the form of a right circular cylinder of radius d parallel to the y-axis.
as shown in Figure (2D). The integrals are independent of the y coordinate of the axis of the cylinder.

\[I_{e.o} = \frac{\pi R^2}{ab} q^+ \left[\left(\frac{2\pi x_0}{a} \right) \frac{J_1(2\pi R/a)}{\pi R/a} \right] . \] (6D)

On the basis of the above results, we can readily evaluate the necessary integrals for the case of hollow, composite and multiple obstacles composed of simple shapes like those described above. Terms of the form \(f(R)I \) are simply replaced by \(\sum_n f(R_n)I_n \) where the index \(n \) refers to a constituent obstacle. The set of obstacles must still be symmetrical about \(z = 0 \) and must not extend in the \(z \) direction more than the shortest half wavelength in the dielectric.

3. **Numerical examples for dielectric obstacles**

In this section, numerical examples are presented for each of the obstacle geometries discussed in the preceding section: a rectangular parallelepiped, and right circular cylinders parallel to the \(x, y \) and \(z \) axes, which will be referred to hereafter as geometries A, B, C and D, respectively. The following parameters have been chosen arbitrarily for convenience.

\[\omega^2 \frac{a^2}{c^2} = 2\pi^2 \] (7a)

\[b/a = 1/2 \] (7b)

\[d/a = 1/4 \] (7c)

\[\epsilon = 2\epsilon_0 \] (7d)
A dielectric obstacle in a rectangular waveguide, in the form of a right circular cylinder of radius R parallel to the z-axis.
where \(\varepsilon_0 \) is the permittivity of free space. Note that with this choice of the parameters only the dominant mode propagates, since

\[
k_n = \left[\frac{\omega^2}{c^2} - \frac{n^2 \kappa^2}{a^2} \right]^{\frac{1}{2}}
\]

is real only for \(n = 1 \). Also, a half guide wavelength in the dielectric is \(a/\sqrt{\varepsilon} \) which exceeds \(2d = \frac{1}{2} a \) by the factor \(2/\sqrt{\varepsilon} \). In addition, the following dimensions have been selected for the particular geometries:

Geometry (A): \(x_1 = \frac{1}{2} a - d, \ x_2 = \frac{1}{2} a + d, \ y_1 = 0 \ y_2 = b \)

Geometry (B): \(x_1 = 0, \ x_2 = a \).

Geometry (C): \(x_0 = \frac{1}{2} a, \ y_1 = 0, \ y_2 = b \).

Geometry (D): \(x_0 = \frac{1}{2} a \). Two cases are calculated, (1) \(R = \frac{1}{4} a \) and (2) \(R = \frac{1}{8} a \).

The parameter \(Kd/\pi \) might be expected to yield the closest bounds for some value between \(1/4 \) and \(3\frac{1}{2}/4 \), corresponding to no obstacle and to a dielectric slab with the same permittivity as the obstacle, respectively. Calculations were carried out for \(Kd/\pi = 0.25, 0.30, 0.35, 0.40 \) and \(0.45 \). The best of the upper and lower bounds on \(\eta_0 \) and \(\eta_e \) for each geometry are listed in Table I. The corresponding values for \(Kd/\pi \) are listed in Table II. Bounds on \(\cot(\eta - \Theta) \) are actually calculated, so that in general bounds on \(\eta \) are determined only to within an integral multiple of \(\pi \). However, in all of the examples considered we have required that the obstacle be such that \(-\pi < \eta - \Theta < 0 \) in order to obtain lower bounds on \(\alpha_0 \) and \(\beta_0 \). In addition, it follows from the monotonicity theorem that \(0 < \eta \) since the permittivity is positive in all examples considered. As a consequence, bounds can be
Table I.

<table>
<thead>
<tr>
<th>Geometry</th>
<th>η_0 lower bound</th>
<th>η_0 upper bound</th>
<th>η_e lower bound</th>
<th>η_e upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$18^{0}42'$</td>
<td>$19^{0}24'$</td>
<td>$34^{0}20'$</td>
<td>$34^{0}55'$</td>
</tr>
<tr>
<td>B</td>
<td>$13^{0}0'$</td>
<td>$13^{0}47'$</td>
<td>$35^{0}49'$</td>
<td>$36^{0}46'$</td>
</tr>
<tr>
<td>C</td>
<td>$11^{0}19'$</td>
<td>$12^{0}12'$</td>
<td>$33^{0}13'$</td>
<td>$33^{0}50'$</td>
</tr>
<tr>
<td>C*</td>
<td>$11^{0}25'$</td>
<td>-</td>
<td>$32^{0}19'$</td>
<td>-</td>
</tr>
<tr>
<td>D1</td>
<td>$14^{0}30'$</td>
<td>$15^{0}30'$</td>
<td>$31^{0}8'$</td>
<td>$32^{0}18'$</td>
</tr>
<tr>
<td>D2</td>
<td>$3^{0}19'$</td>
<td>$3^{0}47'$</td>
<td>$12^{0}6'$</td>
<td>$13^{0}25'$</td>
</tr>
</tbody>
</table>

Upper and lower bounds on the even and odd phase shifts were calculated with the simple trial function with the exception of C^*, which was calculated for geometry C using the trial function which generates the Schwinger integral variational principle.
Table II.

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Kd/π (odd case)</th>
<th>Kd/π (even case)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lower bound</td>
<td>upper bound</td>
</tr>
<tr>
<td>A</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>B</td>
<td>0.40</td>
<td>0.30</td>
</tr>
<tr>
<td>C</td>
<td>0.40</td>
<td>0.30</td>
</tr>
<tr>
<td>D1</td>
<td>0.40</td>
<td>0.35</td>
</tr>
<tr>
<td>D2</td>
<td>0.30</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Bounds on the phase shifts calculated with the simple trial function using five values of the variation parameter Kd/π: 0.25, 0.30, 0.35, 0.40 and 0.45. The best of the five bounds in each case is listed in Table I; in this table are listed the corresponding values of Kd/π (note that these are not bounds on Kd/π).
determined on \(\eta \) directly as well as on \(\cot(\eta - \Theta) \). It is more conventional
to present the data in terms of the elements of the equivalent circuit
shown in Figure (3)\(^3,4\). The reactances \(X_1 \) and \(X_2 \) are relative to the char-
acteristic impedance of the waveguide, and are related to the phase shifts
\(\eta_0 \) and \(\eta_e \) by

\[
X_1 = \tan \eta_0 \quad (11a)
\]

\[
X_2 = \frac{1}{2}(\cot \eta_e + \tan \eta_0) \quad (11b)
\]

The upper and lower bounds on \(X_1 \) and \(X_2 \) for each of the geometries are
listed in Table III.

Geometries A, C and D1 correspond to obstacles of comparable volume,
whereas the volume of D2 is one quarter that of D1, resulting in a smaller
series reactance and larger shunt reactance. Obstacle B has twice the
volume of C and D1, but the additional material is in a region of low
field and makes relatively little contribution.

The upper and lower bounds on the even and odd phase shifts for
gometry D1, corresponding to all five values of the variation parameter
\(K_d/\pi \), are listed in Table IV. The best bounds were obtained with
\(K_d/\pi = 0.40 \) except for the upper bound on \(\eta_0 \), which was obtained with
\(K_d/\pi = 0.35 \). The best bounds with geometry D2 were all obtained with
\(K_d/\pi = 0.30 \). The same range of values of \(K_d \) was employed in calculating
both geometries (D1) and (D2), since then only the integrals \(I_e \) and \(I_o \)
of Equation (6D), which are independent of \(K_d \), were different for the two
cases. However, the above result suggests that better bounds might have
Figure 3

Equivalent 'T' network for describing the far field effects of scattering by dielectric obstacles in waveguides.
Table III.

<table>
<thead>
<tr>
<th>Geometry</th>
<th>X_1 lower bound</th>
<th>X_1 upper bound</th>
<th>X_2 lower bound</th>
<th>X_2 upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.3348</td>
<td>0.3522</td>
<td>0.8833</td>
<td>0.9082</td>
</tr>
<tr>
<td>B</td>
<td>0.2309</td>
<td>0.2453</td>
<td>0.7846</td>
<td>0.8155</td>
</tr>
<tr>
<td>C</td>
<td>0.2001</td>
<td>0.2162</td>
<td>0.8460</td>
<td>0.8717</td>
</tr>
<tr>
<td>D1</td>
<td>0.2586</td>
<td>0.2773</td>
<td>0.9202</td>
<td>0.9664</td>
</tr>
<tr>
<td>D2</td>
<td>0.05795</td>
<td>0.06613</td>
<td>2.125</td>
<td>2.365</td>
</tr>
</tbody>
</table>

Upper and lower bounds on the reactances of the equivalent T network shown in Figure (3), for the geometries described in the text.
Table IV.

<table>
<thead>
<tr>
<th>Kd/λ</th>
<th>n₀ lower bound</th>
<th>n₀ upper bound</th>
<th>nₑ lower bound</th>
<th>nₑ upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>13°27'</td>
<td>15°58'</td>
<td>24°56'</td>
<td>90°9'</td>
</tr>
<tr>
<td>0.30</td>
<td>14°0'</td>
<td>15°41'</td>
<td>27°42'</td>
<td>48°6'</td>
</tr>
<tr>
<td>0.35</td>
<td>14°16'</td>
<td>15°30'</td>
<td>30°9'</td>
<td>35°37'</td>
</tr>
<tr>
<td>0.40</td>
<td>14°30'</td>
<td>16°31'</td>
<td>31°8'</td>
<td>32°18'</td>
</tr>
<tr>
<td>0.45</td>
<td>15°54'</td>
<td>18°14'</td>
<td>0°</td>
<td>34°16'</td>
</tr>
</tbody>
</table>

The upper and lower bounds on the even and odd phase shifts for geometry D1 are listed for all five values of the variation parameter Kd/λ.
been obtained for geometry (D2) if a smaller range of values of Kd close to \(\pi/4\) had been selected.

If the 'potential' of the slab is taken as the average of the actual 'potential' contained within the slab, weighted with the square of the trial field, it is evident that the first order correction term vanishes in Equation (14) of Part I. As a consequence, the trial phase shift is itself a variational approximation to the actual phase shift, and when \(\beta_0 = \infty\) it is a lower bound. It seems likely that the 'potential' which provides the best bounds is not very different from the average 'potential'. A rough estimate of the average 'potential' might provide a criterion for selecting the range of values of Kd in a particular problem. It would also follow that Kd should be close to \(\pi/4\) for small obstacles.

Approximate values of \(\eta_o\) and \(\eta_e\) were calculated for the example of geometry (3) using the Schwinger integral variational principle and trial function described in Reference (5) and are listed in Table I. If we take \(\rho = W\) in Equation (27) of Part I, and if we have \(W > 0\) and \(\eta < \pi\), then \(\beta_0 = 1\) as shown in Part I. We can combine Equations (14) and (27) of Part I to obtain an upper bound on \(\cot \eta\). It can be shown that the Schwinger variational principle provides a lower bound on \(\cot \eta\) by substituting in this inequality the trial function

\[
\frac{1}{(ab)^{1/2}} \left(2\cot \eta \psi(r) + a \int G(r, r') W(r') \phi(r') \, dr' \right)
\]

(12)

where \(\psi(r)\) is the field that would exist in the absence of the obstacle.
\(\phi(r) \) is the trial function used in the Schwinger variational principle, and \(G(r,r') \) is the appropriate Green's function defined in Reference (5). (This result was previously proved by Kato\(^2\)). The Schwinger result provides a better lower bound on \(\eta_o \) and a worse lower bound on \(\eta_e \) than the simple trial function; however, the comparison between the two trial functions is not altogether fair because the trial function for the Schwinger case was chosen to provide accurate results only for small obstacles.

We have seen that relatively close bounds can be obtained with a rather crude trial function and only five values of the variational parameter. Closer bounds might be obtained with the same trial function by varying \(\Theta \), or by considering other values of \(K_d \); the most natural way to choose another value of \(K_d \) would probably be to plot the bound on \(\cot(\eta-\Theta) \) versus \(K_d \) for the values of \(K_d \) originally considered, to guess from the curve the best value of \(K_d \), and then to do the calculation for that value of \(K_d \). It is of course also possible to introduce a more sophisticated trial function with more variational parameters, but this procedure will probably result in considerably more labor.
References

2. T. Kato, Progress of Theoretical Physics, 6, 394 (1951).

null
Lockheed Aircraft Corporation
2555 N. Hollywood Way
California Division Engineering Library
Department 72-75, Plant A-1, Bldg. 63-1
Hollywood, California
Attn: N. C. Harnois

The Martin Company
P. O. Box 179
Denver 1, Colorado
Attn: Mr. Jack McCormick

The Glenn L. Martin Company
Baltimore 3, Maryland
Attn: Engineering Library
Antenna Design Group

Maryland Electronic Manufacturing Corp.
5009 Calvert Road
College Park, Maryland
Attn: Mr. N. Warren Cooper

Mathematical Reviews
190 Hope Street
Providence 6, Rhode Island

The W. L. Maxon Corporation
60 West 36th Street
New York, N. Y.
Attn: Miss Dorothy Clark

McDonnell Aircraft Corporation
Imbert Saint-Louis Municipal Airport
Box 316, St. Louis 3, Missouri
Attn: R. D. Detrich, Engineering Library

McMillan Laboratory, Inc.
Brownsville Avenue
Ipswich, Massachusetts
Attn: Security Officer, Document Room

Helfer, Inc.
3000 Arlington Boulevard
Falls Church, Virginia
Attn: Engineering Technical Library

Microwave Development Laboratory
90 Broadway
Babson Park 57, Massachusetts
Attn: N. Tucker, General Manager

Microwave Radiation Company Inc.
19223 South Hamilton Street
Gardena, California
Attn: Mr. Morris J. Ehrlich, President

Chance Vought Aircraft, Inc.
9313 West Jefferson Street
Dallas, Texas
Attn: Mr. H. S. White, Librarian

Northrop Aircraft, Inc.
Hawthorne, California
Attn: Mr. R. A. Pristis, Library Dept. 31145
101 E. Broadway

Remington Rand Univ. - Division of Sperry Rand Corporation
1900 West Alhambra Avenue
Philadelphia 29, Pennsylvania
Attn: Mr. John P. McCarthy
D and Sales and Contracts

North American Aviation, Inc.
3221 Lakewood Boulevard
Downey, California
Attn: Engineering Library 495-115

North American Aviation, Inc.
Los Angeles International Airport
Los Angeles 15, California
Attn: Engineering Technical File

Page Communications Engineers, Inc.
710 Fourteenth Street, Northwest
Washington 6, D. C.
Attn: Librarian

Philo Corporation Research Division
Branch Library
1700 Massachusetts Avenue
Philadelphia 6, Pa.
Attn: Mrs. Dorothy S. Collins

Pickard and Burns, Inc.
285 Highland Avenue
Needham, Mass.
Attn: Dr. J. T. DeJuliettacourt

Polytechnic Research and Development Company, Inc.
202 Tillery Street
Brooklyn 1, New York
Attn: Technical Library

Radiation Engineering Laboratory
Main Street
Maynard, Mass.
Attn: Dr. John Ruse

Radiation, Inc.
P. O. Drawer 37
Melbourne, Florida
Attn: Technical Library, Mr. M. L. Cox

Radio Corp. of America
RCA Laboratories
Rocky Point, New York
Attn: P. S. Carter, Lab. Library

RCA Laboratories
David Sarnoff Research Center
Princeton, New Jersey
Attn: Miss Fern Coughlin, Librarian
Research Library

Radio Corporation of America
Defense Electronics Products
Building 10, Floor 7
Candem 2, New Jersey
Attn: Mr. Harold J. Schrader
Staff Engineer, Organization of Chief Technical Administrator

The Ramo-Wooldridge Corporation
P. O. Box 15593 Airport Station
Los Angeles 15, California
Attn: Margaret C. Whisnant, Chief Librarian

Rocket Microwave Co.
9592 Baltimore Avenue
College Park, Maryland

Director, USAF Project RAND
Via: Air Force Liaison Office
The Rand Corporation
1700 Main Street
Santa Monica, California

Rantec Corporation
Calabasas, California
Attn: Grace Keener, Office Manager

Raytheon Manufacturing Company
Missile Systems Division
Bedford, Mass.
Attn: Miss Alice G. Anderson, Librarian

Raytheon Manufacturing Company
Weyland Laboratory, State Road
Weyland, Mass.
Attn: Mr. Robert Bots

Raytheon Manufacturing Company
Weyland Laboratory
Weyland, Mass.
Attn: Miss Alice G. Anderson, Librarian

Republic Aviation Corporation
Farmingdale, Long Island, N. Y.
Attn: Engineering Library

Thurgo Air Force Plant Representative
Republic Aviation Corp
Farmingdale, Long Island, N. Y.

U-218 Manufacturing Company
9250 East Hall Road
Downey, California
Attn: J. C. Joerger

Trans-Tech, Inc.
P. O. Box 356
Frederick, Maryland

Ryan Aeronautical Company
Lincoln Field
San Diego 12, California
Attn: Library - unclassified

Sage Laboratories
159 Linden Street
Wellesley 8, Mass.

Sanders Associates
95 Canal Street
Nashua, New Hampshire
Attn: N. R. Wild, Librarian

Sandia Corporation, Sandia Base
P. O. Box 5900, Albuquerque, New Mexico
Attn: Classified Document Division

Spraye Gyrascope Company
Great Neck, Long Island, New York
Attn: Florence W. Turnbull, Engr. Librarian

Stanford Research Institute
Menlo Park, California
Attn: Library, Engineering Division

Sylvania Electric Products, Inc.
100 First Avenue
Waltham 5, Mass.
Attn: Charles A. Thornhill, Report Librarian
Waltham Laboratories Library

Systems Laboratories Corporation
1602 Ventura Boulevard
Sherman Oaks, California
Attn: Donald L. Magruder

TGS, Inc.
17 Union Square West
New York 3, N. Y.
Attn: W. L. Henderson, Librarian

A. S. Thomas, Inc.
161 Devonshire Street
Boston 10, Mass.
Attn: A. S. Thomas, President

Bell Telephone Laboratories
Murray Hill
New Jersey

Chu Associates
P. O. Box 167
Whitcomb Avenue
Littleton, Mass.

Microvite Associates, Inc.
Burlington, Mass.

Raytheon Manufacturing Company
Missile Division
Hartwell Road
Bedford, Mass.

Radio Corporation of America
Avionics Systems Laboratory
225 Crescent Street
Waltham, Mass.

Lockheed Aircraft Corporation
Missile Systems Division
National Aeronautics and Space Administration
Box 500, Sunnyvale, California
Attn: Miss Ewa Lou Robertson, Chief Librarian

The Rand Corporation
1700 Main Street
Santa Monica, California
Attn: Dr. W. C. Hoffman, Commander

AP Office of Scientific Research
Air Research and Development Command
11th Street and Constitution Avenue
Washington, D. C.
Attn: Mr. Otting, SRY

Westinghouse Electric Corp.
Electronics Division
Friendship Int'l Airport Box 714
Baltimore 3, Maryland
Attn: Engineering Library
Ionosphere Research Laboratory
Pennsylvania State College
State College, Pennsylvania
ATTN: Professor A. H. Warlick, Director

Institute of Mathematical Sciences
25 Weaver Pl.
New York 3, New York
ATTN: Librarian

Electronic Division
Sand Corporation
1700 Main Street
Santa Monica, California
ATTN: Dr. Robert Kalaba

National Bureau of Standards
Washington, D. C.
ATTN: Dr. W. K. Saunders

Applied Mathematics and Statistics Lab.
Stanford University
Stanford, California
ATTN: Dr. Albert H. Bowker

Department of Physics and Astronomy
Michigan State College
East Lansing, Michigan
ATTN: Dr. A. Leitner

University of Tennessee
Knoxville, Tennessee
ATTN: Fred A. Picken

Lebanon Valley College
Annville, Pennsylvania
ATTN: Professor B. H. Bissinger

General Atomic
P. O. Box 608
San Diego 12, California
ATTN: Mr. Edward Nersby

Department of Physics
Amherst College
Amherst, Mass.
ATTN: Dr. Arnold Arons

California Institute of Technology
1201 E. California Street
Pasadena, California
ATTN: Dr. A. Erdelyi

Mathematics Department
Stanford University
Stanford, California
ATTN: Dr. Harold Levine

University of Minnesota
Minneapolis 1, Minnesota
ATTN: Professor Paul C. Rosenblum

Department of Mathematics
Stanford University
Stanford, California
ATTN: Professor Bernard Epstein

Applied Physics Laboratory
The Johns Hopkins University
Silver Spring, Maryland
ATTN: Dr. E. S. Gouary

(3) Exchange and Gift Division
The Library of Congress
Washington 25, D. C.

Electrical Engineering Department
Massachusetts Institute of Technology
Cambridge 39, Mass.
ATTN: Dr. L. J. Chu

Nuclear Development Associates, Inc.
5 New Street
White Plains, New York
ATTN: Library

California Institute of Technology
Electrical Engineering
Pasadena, California
ATTN: Dr. Zornah A. Kaprielian

Dr. Rodman Doll
311 W. Cross Street
Ypsilanti, Michigan
California Inst. of Technology
Pasadena, California
ATTN: Mr. Calvin Wilcox
Mr. Robert Brockhurst
Woods Hole Oceanographic Institute
Woods Hole, Mass.
National Bureau of Standards
Boulder, Colorado
ATTN: Dr. R. Gallet
Dr. Solomon L. Schwebel
3669 Louis Road
Palo Alto, California
University of Minnesota
The University of Library
Minneapolis, Minnesota
ATTN: Exchange Division

Department of Mathematics
University of California
Berkeley, California
ATTN: Professor Bernard Friedman

Lincoln Laboratory
Massachusetts Institute of Technology
P. O. Box 73
Lexington, Massachusetts
ATTN: Dr. Shou Chin Wang, Room C-351

Melpar, Inc.
3000 Arlington Boulevard
Falls Church, Virginia
ATTN: Mr. K. S. Kelleher, Section Head

Hq. Air Force Cambridge Research Center
Laurence G. Hansen Field
Bedford, Mass.
ATTN: Dr. Francis J. Zucker, CRRD

Hq. Air Force Cambridge Research Center
Laurence G. Hansen Field
Bedford, Mass.
ATTN: Dr. Phillip Newman, CRRX

Mr. N. C. Gerson
Trappe Road
South Lincoln, Mass.

Dr. Richard R. Barr
Systems Development Corp.
2500 Colorado Avenue
Santa Monica, California

Columbia University Hudson Laboratories
P.O. Box 239
165 Palisade Street, Dobbs Ferry, N. Y.
ATTN: Dr. W. W. Johnson

Institute of Fluid Dynamics and
Applied Mathematics
University of Maryland
College Park, Maryland
ATTN: Dr. Elliot Montroll

Department of Electrical Engineering
Washington University
Saint Louis 5, Mo.
ATTN: Professor J. Van Bladel

Department of the Navy
Office of Naval Research Branch Office
1300 E. Green Street
Pasadena 1, California

Brandeis University
Waltham, Mass.
ATTN: Library

General Electric Company
Microwave Laboratory
Electronics Division
Stanford Industrial Park
Palo Alto, California
ATTN: Library

Smyth Research Associates
3555 Aero Court
San Diego 3, California
ATTN: Dr. John B. Smyth

Electrical Engineering
California Institute of Technology
Pasadena, California
ATTN: Dr. George Weil

Naval Research Laboratory
Washington 25, D. C.
ATTN: Dr. Robert L. P. Fass, Code 527A

Dr. George Kar
5 Culver Court
Orinda, California

Brooklyn Polytechnic
85 Livingston Street
Brooklyn, New York
ATTN: Dr. Nathan Marcuvitz

Department of Electrical Engineering
Brooklyn Polytechnic
85 Livingston Street
Brooklyn, New York
ATTN: Dr. Jerry Shmoh

Department of Mathematics
University of New Mexico
Albuquerque, New Mexico
ATTN: Dr. I. Kolodner

Mathematics Department
Polytechnic Institute of Brooklyn
Johnson and Jay Street
Brooklyn, New York
ATTN: Dr. Henry Hochstadt

Ballistics Research Laboratory
Aberdeen Proving Grounds
Aberdeen, Maryland
ATTN: Dr. Allen Rees

Dr. Lester Kraus
1935 Whiteman Way
San Diego, California

University of Minnesota
Institute of Technology
Minneapolis, Minnesota
ATTN: Dean Atherton Spilhaus

Ohio State University
Columbus, Ohio
ATTN: Prof. C. T. Tai

Department of Electrical Eng.
Naval Research Laboratories
Washington 25, D. C.
ATTN: W. S. Ament, Code 5271

Naval Research Laboratory
Washington 25, D. C.
ATTN: Dr. Leslie G. McCracken, Jr.
Code 3933A

Office of Naval Research
Department of the Navy
ATTN: Geophysical Branch, Code L6
Washington 25, D. C.

Office of Chief Signal Officer
Signal Plans and Operations Division
ATTN: SHPL-2, Room 20
Com. Liaison Dr., Radio Prop. Sect.
The Pentagon, Washington 25, D. C.

Defence Research Branch
Canadian Joint Staff
2001 Connecticut Street
Washington, D. C.

Central Radio Prop. Lab.
National Bureau of Standards
ATTN: Technical Reports Library
Boulder, Colorado

U. S. Weather Bureau
U. S. Department of Commerce
Washington 25, D. C.
ATTN: Dr. Harry Wexler
Bartram, & Spruch.

Bounds on the elements of the equivalent network for scattering in waveguides.

II: Application to dielectric obstacles.